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  Abstract 

 
 This article provides a practical implementation of image similarity search 

using AWS OpenSearch Service, employing the Kaggle celebrity dataset as a 

case study. Image similarity search is animportantuse case in several 

applications like e-commerce, search engines, and digital document storage. 

Image similarity search involves identifying images resembling a reference 

image from a large dataset. This process requires extracting and transforming 

image features into vector embeddings and storing them in a vector database 

for efficient retrieval. The article outlines the steps of feature extraction, 

particularly using the ResNet50 model, and provides the details on storage 

and retrieval process in AWS OpenSearch Service. Key results from the use 

of the celebrity face image dataset highlight the robust capabilities of AWS 

OpenSearch Service in executing image similarity searches with high recall.  
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1. Introduction 

 

Images play a key role in today's applications, which handle a vast amount of image data, ranging from social 

media and e-commerce sites to search engines. For example, e-commerce websites have several high-quality 

images of products,search engines keep a large collection of images linked to web documents, and digital 

document storage services often contain many images. With so many applications dealing with extensive 

image data, it isan important use case to be able to find images that are similar to each other based on what 

users are looking for. For example, e-commerce sites can enhance shopping experience by showing 

customers products similar to what they're currently viewing. Likewise, on a search engine, users might want 

to find all images similar toones they've uploaded. Handling these kinds of image-related searches efficiently 

is crucial in today's digital world. 

 

To enable image similarity search, applications use machine learning models to extract meaningful and 

contextual information from images. This information is transformed into embeddings, or vectors, which are 

then stored in a vector database. Vector databasesare designed for efficient storage and querying based on 

vector data. They support algorithms like approximate nearest neighbor (ANN) search, which are crucial for 

finding the closest matches to a queried vector. ANN search is particularly useful for image similarity 

searches within large datasets, as it efficiently identifies the most similar images.This paper providesan 

overview of how image similarity search workswith AWS OpenSearch Service and includes an example 

implementation using the Kaggle celebrity dataset. 

 

2. Image Similarity Search 

 

In image similarity search, the main goal is to locate images that closely resemble a user-provided reference 

image from a large collection. This process begins with feature extraction, where distinct characteristics of 

each image are converted into dense vector embeddings. These embeddings encapsulate crucial elements of 

the images in a numerical form.Once extracted, these embeddings are stored in a vector database. Vector 

database is designed for efficient storage and retrieval of high-dimensional vector data, facilitating quick and 
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effective search operations. When a search query is initiated, the reference image goes through the same 

feature extraction process to generate its embedding. This embedding is then used as the query vector for 

similarity search. Vector databasessupport various ANNalgorithms for handling large-scale datasets. These 

algorithms help the system to quickly go through the large number of image embeddings and identify those 

most similar to the query embedding.  

 

The subsequent sections provide basic overview of feature extraction, the mechanics of embedding storage, 

and the methodologies employed in similarity query searches.  

 

 

Figure 1. Offline First Reference Architecture 

 

2.1 Feature Extraction 

 

Feature extraction is an important step in image recognition, as it involves retrieving relevant information and 

context to construct feature vectors or embeddings. These embeddings are crucial for achieving high 

accuracy in image similarity searches. There are various techniques for image feature extraction, including 

Convolutional Neural Networks (CNNs), grayscale features, edge detection, autoencoders, Scale-Invariant 

Feature Transforms (SIFT), and Local Binary Patterns (LBP). CNNs are often the preferred choice for 

feature extraction due to their proficiency in detecting local image features like edges and textures, as well as 

their ability to learn complex hierarchical patterns, such as object parts. Moreover, the availability of several 

pre-trained CNN models, such as VGG, ResNet, and Xception, which have been trained on extensive image 

datasets, makes them highly effective and readily usable for various feature extraction tasks. 

 

2.2Storage and Retrieval  

Embeddings derived from the feature extraction process are high-dimensional vectors. Vector databases are 

specialized in storing these embeddings, facilitating fast and precise similarity searches. They simplify the 

management of vector data by prioritizing semantic or contextual closeness over exact matches, making them 

ideal for tasks requiring a deeper understanding of content. 

 

Vector databases employ various algorithms to index and query these vector embeddings. These algorithms 

support ANN searches, employing techniques like hashing, quantization, or graph-based searches. While 

ANN is less exact than the K Nearest Neighbors (KNN) algorithm, it's more efficient for handling large 

datasets with high-dimensional vectors, striking a balance between computational intensity and accuracy. 

When a query for similar vectors is received, the vector database compares the query vector against its 

indexed vectors to identify the nearest neighbors. There are multiple approaches to constructing vector 

indexes, including flat indexing, Locality Sensitive Hashing (LSH), Inverted File (IVF) Indexes, and 

Hierarchical Navigable Small Worlds (HNSW) indexes. Each of these methods offers unique advantages in 

optimizing search accuracy and speed. 

3. Implementation Using AWS OpenSearch Service 

 
This section provides details on how image similarity search can be implemented using AWS OpenSearch 

service as a vector database. 

 
3.1 Dataset 

 

For this article, 'Celebrity Face Image Dataset' from Kaggle [4] is used. It's a collection of 1800 total images 

from 18 different famous Hollywood celebrities and contains 100 images for each celebrity. This dataset was 

chosen for its simplicity and variety of images, providing an ideal basis for demonstrating the effectiveness 

of image similarity search algorithms. For more information on the dataset, please refer to [1].Out of 1800 

images, 80% (1440 images) will be stored in the vector database and the remaining 20% (360 images) will be 

used for doing similarity search queries. 

 

3.2Feature Extraction 

 

For feature extraction, we have used ResNet50 model which is widely used CNN for image classification 

tasks. This model is initially loaded with weights that have been pre-trained on the ImageNet dataset.We 

replaced its top layer with a Global Average Pooling 2D layer to reduce output dimensions while keeping 

important features. Next, we added a dense layer with 1024 neurons with ReLU activation to capture 
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complex image patterns. Finally, we concluded the architecture with a 256-neuron logistic layer using 

softmax activation, converting the patterns into 256-dimensional vector embeddings for each image. 

This architecture combines ResNet50's strengths with our specific needs for efficient image similarity search. 

 

3.3Storage and Similarity Search 

 

As part of initial storage, 80% of the images from the 'Celebrity Face Image Dataset' goes through the feature 

extraction and generated 256-dimensional vector embeddings are stored in the AWS OpenSearch vector 

database using a Jupyter notebook. AWS OpenSearch service is a fully managed service which provides 

vector database capabilities. It provides ANN vector search capabilities by building vector indexes from two 

different algorithms, HNSW and IVF using Non-Metric Space Library (NMSLIB), Facebook AI Similarity 

Search (FAISS) and Lucene libraries. Additionally, it is highly scalable and available.  

 

A new index, as shown in Figure 1, is created in AWS OpenSearch where each document contains“name” 

and “image_embedding” fields. “Name” field stores the actual celebrity‟s name and “image_embedding” 

stores the 256-dimensional vector embedding for the image. This index uses NMSLIB engine and HNSW 

algorithm to support nearest neighbor search.  

 

 
Figure 1. ANN Search Index Example 

 

Figure 2 shows an example of ANN query. In this scenario, a vector embedding is generated first using the 

ResNet model mentioned above for feature extraction. Then this vector embedding is used for the ANN 

query where K=1 and size=2 which provides 1 nearest neighbor per shard and overall, two results.Both of the 

results returned by OpenSearch correspond to the same celebrity as the query vector. 

 

 
Figure 2. ANN Similarity Search 
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4. Results 

 
After conducting the ANN similarity search on20% (360images)of the dataset, OpenSearch returned the 

correct celebrity name (at least one result in the response) in 81.9% (295) of the queries. For these queries, 

we set „K‟, the number of nearest neighbors per shard, as 5, with a total response size of 10. 

 
It is important to recognize that recall usually depeds on a variety of factors, including the number of vectors, 

their dimensions, the configuration of clusters, and the characteristics of the dataset. Therefore, a detailed 

understanding of the system's requirements regarding latency and accuracy is essential for determining the 

right configuration. 

 

5. Conclusion 
 

This article has demonstrated the practicality and effectiveness of using AWS OpenSearch Service for image 

similarity search. Our implementation with the Celebrity Face Image Dataset from Kaggle shows how a 

practical image similarity search system can be implemented using CNN based feature extraction and AWS 

OpenSearch Service as a vector database. The use of ANN algorithms within a scalable platform like AWS 

OpenSearch Service demonstrates a powerful approach to handling extensive image datasets. Future work 

could focus on refining the feature extraction process, exploring different neural network architectures, and 

experimenting with other indexing and search algorithms to further enhance the recall. Additionally, applying 

this methodology to diverse and larger datasets would provide more insights into its scalability and 

adaptability to different use cases. 
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